遵义在线

遵义本地生活资讯平台

公务员考试中有趣的问题(最奇葩的公务员考试题)

本篇文章给大家谈谈公务员考试中有趣的问题,以及最奇葩的公务员考试题对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

一道有趣的数学题,公务员考试题,帮看看

如果集中到第一个仓库

20*100*0.5+40*400*0.5=18*10*100*0.5

如果集中到第二个仓库

10*100*0.5+40*300*0.5=13*10*100*0.5

如果集中到第三个仓库 10*200*0.5+20*100*0.5+40*200*0.5=12*10*100*0.5

如果集中到第四个仓库

10*300*0.5+20*200*0.5+40*100*0.5=11*10*100*0.5

如果集中到第五个仓库

10*400*0.5+20*300*0.5=10*10*100*0.5

所以最少需要5000元运费

自己做公务员考试题目有个疑问,望解答

应该是角谷猜想 吧

一简介 角谷猜想: 考拉兹猜想,又称为3n+1猜想、角谷猜想、哈塞猜想、乌拉姆猜想或叙拉古猜想,是指对於每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。 取一个数字 如n = 6,根据上述公式,得出 6→3→10→5→16→8→4→2→1 。(步骤中最高的数是16,共有7个步骤) 如n = 11,根据上述公式,得出 11→34→17→52→26→13→40→20→10→5→16→8→4→2→1。(步骤中最高的数是40,共有13个步骤) 如n = 27,根据上述公式,得出 : 27→82→41→124→62→31→94→47→142→71→214→107→322→161→484→242→121→364→182→91→274→137→412→206→103→310→155→466→233 →700→350→175→526→263→790→395→1186→593→1780→890→445→1336→668→334→167→502→251→754→377→1132→566→283→850→425→1276 →638→319→958→479→1438→719→2158→1079→3238→1619→4858→2429→7288→3644→1822→911→2734→1367→4102→2051→6154→3077→9232 →4616→2308→1154→577→1732→866→433→1300→650→325→976→488→244→122→61→184→92→46→23→70→35→106→53→160→80→40→20→10 →5→16→8→4→2→1。(步骤中最高的数是9232,共有111个步骤) 考拉兹猜想称,任何正整数,经过上述计算步骤后,最终都会得到 1 。 注意:与角谷猜想相反的是蝴蝶效应,初始值极小误差,会造成巨大的不同;而3x+1恰恰相反,无论多么大的误差,都是会自行的恢复。 二,逆行思考 (一)角谷猜想是说,任何一个自然数,如果是偶数,就除以2,如果是奇数,就乘以3再加1。最后,经过若干次迭代得到1。也就是说,不管怎样迭代,最后都会转移到2^n ;不断除以2以后,最后是1。迭代过程只要出现2的幂,问题就解决了。也就是说,第一个层次是2^n。 (二)第二个层次是:所有奇数m乘 以3再加上1以后回到的有: m1=(2^n-1)/3。 也就是只要进入m1,只要一步就可以回到2^n。例如: n=4时,m1=5;3×5+1=16。或者:1+2^2=5。 n=6时;m1=21;21×3+1=64。或者:5+2^4=21。 n=8时;m1=85;85×3+1=256。或者:21+2^6=85。 n=10时;m1=341;341×3+1=1024。或者:85+2^8=341。 n=12时;m1=1365;1365×3+1=4096。或者341+2^10=1365。 n=12时;m5461;5461×3+1=16384。即:m(x+1)=m(x)+2^n ……;直到无穷,因为已经知道定理:n是偶数时,3|(2^n-1);m(x+1)=m(x)+2^n。 任何奇数进入了以后m1=2^n-1)/3(有无穷多个m1=(2^n-1)/3)问题就解决了,只要一步,就可以回到2^n。我们可以轻而易举地找到任意大的m1。 (三),第三个层次是:从一得知,有无穷多个自然数的奇数m1=(2^n-1)/3任何一个奇数,只有进入5;21;85;341;….。问题就解决了。 我们仅以第一个5来说,能够回到5的奇数有(5×2^n-1)/3的有: 例如: (5×2^1-1)/3=3;3×3+1=10;10÷2=5。 5×2^3-1)/3=13;13×3+1=40;40÷8=5。 5×2^5-1)/3=53; 53×3+1=160,160÷32=5。 5×2^7-1)/3=213; 213×3+1=640,640÷128=5。 n=奇数时都有解,有无穷多个m1=(2^n-1)/3..即2^n|(3m1+1)。也就是说,只要进入m1=(2^n-1)/3题就彻底解决了。我们可以轻而易举找到任意大的m1=(2^n-1)/3。 (三),从而得知,能够回到5的奇数有有无穷多个,我们仅以13来说,能够回到13的:有17;69;173;277;…;m(x+1)=m(x)+2^n×13。 例如17=m2,17×3+1=52;52÷4=13。 17+2^2×13=69;69×3+1=208; 208÷16=13。 69+2^4×13=277;277×3+1=832; 832÷64=13。 277+2^6×13=1109;1109×3+1=3328;3328÷256=13。 1109+2^8×13=4437.;4437×3+1=13312;13312÷1024=13。 ……..。 有无穷多个m(x+1)=m(x)+2^n×13。它们可以回到13。只要回到问题就解决了。 我们可以轻而易举找到任意大的m(x+1)=m(x)+2^n×13。 参见下面的归纳图:(每一纵列都有无穷多个数值,横向可以无穷扩展而不重复)。例如:右上角第一个数33, 33×3+1=100,100÷4=25; 25×3+1=76,76÷4=19; 19×3+1=58,58÷2=29; 29×3+1=88,88÷8=11; 11×3+1=34,34÷2=17; 17×3+1=52,52÷4=13; 13×3+1=40,40÷8=5; 5×3+1=16,16÷16=1。图中每一个数都可以回到终点2^n。 例如:177。 177×3+1=532,532÷4=133,133→25→19→29→11→17→13→5→2^n . 709×3+1=2128,2128÷16=133→25→19→29→11→17→13→5→2^n 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 有无穷多个数值回到任何一列,有无穷多个数值回到任何一行。 显然,这样的程序可以无限制进行下去。 于任何一个自然数A, (1)a.如果A为偶数,就除以2 b.如果A为奇数,就乘以3加上1 得数记为B (2)将B代入A重新进行(1)的运算 若干步后,得数为1. 这个猜想就叫做角谷猜想, 在2006年这个问题被证明是recursively undecidable的了。 Kurtz, Stuart A.; Simon, Janos, "The Undecidability of the. Generalized Collatz Problem", Department of Computer Science. The University of Chicago, December 26, 2006.

编辑本段一个错误的证明

最简单的证明角谷(3n+1)猜想的方法 因为任何偶数都能变成2^a或一个奇数乘2^b。前者在不停的除以2之后必定为1,因为它们只有质因数2。而后者则只能剩下一个奇数,我们可以把偶数放在一边不谈。 现在只剩下奇数了。 我们假设一个奇数m,当他进行运算时,变成3m+1。如果这个猜想是错误的话,那么就有(3m+1)/2^c=m,且m不等于1。我们尝试一下: 当c=1时,3m+1=2m,,,m=-1,不符合,舍去; 当c=2时,3m+1=4m,,,m=1,不符合,舍去; 当c=3时,3m+1=8m,,,m=0.2,不符合,舍去; 当c=4时,3m+1=16m,,,m=1/13,不符合,舍去; …………………… 可见,能推翻角谷猜想的数只在1或以下的范围,所以没有数能推翻这个猜想,所以这个猜想是正确的。

编辑本段错误分析

我不敢苟同以下这种所谓的证明: “我们假设一个奇数m,当他进行运算时,变成3m+1。如果这个猜想是错误的话,那么就有(3m+1)/2^c=m,且m不等于1。我们尝试一下: 当c=1时,3m+1=2m,,,m=-1,不符合,舍去; 当c=2时,3m+1=4m,,,m=1,不符合,舍去; 当c=3时,3m+1=8m,,,m=0.2,不符合,舍去; 当c=4时,3m+1=16m,,,m=1/13,不符合,舍去; 。。。。。。 可见,能推翻角古猜想的数只在1或以下的范围,所以没有数能推翻这个猜想,所以这个猜想是正确的。” 要知道(3m+1)/2^c=m这个等式左右两边的m是不一样的,虽然两个m都是奇数,但此m非彼m!上面无非就是想说一个奇数乘以3再加1必定可以被2的n次方除尽,当然n到底是多大要看实际情况而定。然而这种表示方法是绝对错误的!不信大家可以试一试,左边代入任意奇数m,右边得出的m绝大多数都是跟左边代入任意奇数m不同的。还有就是这个证明明显存在前后矛盾,前面假设一个奇数m,后面却得出m=0.2、m=1/13这样的结果,难道0.2、1/13这些就是所谓的奇数?连两个m都分不清,更何况是证明呢?大家不要再犯这样的低级错误了呀,脚踏实地才是真。

编辑本段程序实现

角谷猜想(冰雹序列) java code: /** * @param int n , init number * @param int len , the list length, if the length is very very long, maybe OutOfMemory * @return list , the list */ public ListInteger getHailFiguresList(int n, int len){ ListInteger list = new ArrayListInteger(); list.add(n); int count = 0; int previous = list.get(count); while(count len previous != 1){ if(previous % 2 == 0){ list.add(previous/2); }else{ list.add(previous*3-1); } count++; previous = list.get(count); } return list; }

编辑本段角谷猜想的一个推广

角谷猜想又叫叙古拉猜想。它的一个推广是克拉茨问题,下面简要说说这个问题: 50年代开始,在国际数学界广泛流行着这样一个奇怪有趣的数学问题:任意给定一个自然数x,如果是偶数,则变换成x/2,如果是奇数,则变换成3x+1.此后,再对得数继续进行上述变换.例如x=52,可以陆续得出26,13,40,20,10,5,16,8,4,2,1.如果再做下去就得到循环: (4,2,1).再试其他的自然数也会得出相同的结果.这个叫做叙古拉猜想. 上述变换,实际上是进行下列函数的迭代 { x/2 (x是偶数) C(x)= 3x+1 (x是奇数) 问题是,从任意一个自然数开始,经过有限次函数C迭代,能否最终得到循环(4,2,1),或者等价地说,最终得到1?据说克拉茨(L.Collatz)在1950年召开的一次国际数学家大会上谈起过,因而许多人称之为克拉茨问题.但是后来也有许多人独立地发现过同一个问题,所以,从此以后也许为了避免引起问题的归属争议,许多文献称之为3x+1问题. 克拉茨问题吸引人之处在于C迭代过程中一旦出现2的幂,问题就解决了,而2的幂有无穷多个,人们认为只要迭代过程持续足够长,必定会碰到一个2的幂使问题以肯定形式得到解决.正是这种信念使得问题每到一处,便在那里掀起一股"3x+1问题"狂热,不论是大学还是研究机构都不同程度地卷入这一问题.许多数学家开始悬赏征解,有的500美元,有的1000英镑. 日本东京大学的米田信夫已经对240大约是11000亿以下的自然数做了检验.1992年李文斯(G.T.Leavens)和弗穆兰(M.Vermeulen)已经对5.6*1013的自然数进行了验证,均未发现反例.题意如此清晰,明了,简单,连小学生都能看懂的问题,却难到了20世纪许多大数学家.著名学者盖伊(R.K.Guy)在介绍这一世界难题的时候,竟然冠以"不要试图去解决这些问题"为标题.经过几十年的探索与研究,人们似乎接受了大数学家厄特希(P.Erdos)的说法:"数学还没有成熟到足以解决这样的问题!"有人提议将3x+1问题作为下一个费尔马问题. 下面是我对克拉茨问题的初步研究结果,只是发现了一点点规律,距离解决还很遥远. 克拉茨命题:设 n∈N,并且 f(n)= n/2 (如果n是偶数) 或者 3n+1 (如果n是奇数) 现用f1(n)表示f(n),f2(n)=f(f(n)),...fk(n)=f(f(...f(n)...)). 则存在有限正整数m∈N,使得fm(n)=1.(以下称n/2为偶变换,3n+1为奇变换,并且称先奇变换再偶变换为全变换) 克拉茨命题的证明 引理一:若n=2m,则fm(n)=1 (m∈N) 证明:当m=1时,f(n)=f(2)=2/2=1,命题成立,设当m=k时成立,则当m=k+1时,fk+1(n)=f(fk(2k+1))= =f(2)=2/2=1.证毕. 引理二:若n=1+4+42+43+...+4k=(4k+1-1)/(4-1) (k∈N),则有f(n)=3n+1=4k+1=22k+2,从而f2k+3(n)=1. 证明:证明是显然的,省略. 引理三:若n=2m(4k+1-1)/(4-1) (m∈N), 则有fm+2k+3(n)=1. 证明:省略. 定理一:集合 O={X|X=2k-1,k∈N} 对于变换f(X)是封闭的. 证明:对于任意自然数n,若n=2m,则fm(n)=1,对于n=2k,经过若干次偶变换,必然要变成奇数,所以我们以下之考虑奇数的情形,即集合O的情形.对于奇数,首先要进行奇变换,伴随而来的必然是偶变换,所以对于奇数,肯定要进行一次全变换.为了直观起见,我们将奇数列及其全变换排列如下: k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 0 2k-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 1 3k-1 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125 128 131 134 137 140 143 146 149 152 2 3k-2 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 3 3k-1 2 5 8 11 14 17 20 23 26 29 32 35 38 4 3k-2 1 4 7 10 13 16 19 5 3k-1 2 5 8 6 3k-2 1 4 7 3k-1 2 8 3k-2 1 第一行(2k-1)经过全变换(3(2k-1)+1)/2=3k-1变成第二行,实际上等于第一行加上一个k,其中的奇数5,11,...6k-1又回到了第一行.以下各行是等差数列3k-2,3k-1交错排列.由于最终都变成了奇数,所以集合O对于变换f(X)是封闭的. 定理二:任何奇自然数经过若干次变换都会变成1. 证明: 我们看到 奇数经过全变换变成为3k-1型数,3k-1型奇数经过全变换有一半仍然变成3k-1型奇数,而另一半3k-1型偶数经过除以2有一半变成为3k-2型奇数,而3k-2型奇数经过全变换又变成为3k-1型数.换句话说不可能经过全变换得到3k-2型数. 下面我们只研究奇数经过全变换的性质,因为对于其他偶数经过若干次偶变换,仍然要回到奇数的行列里来. 我们首先证明奇数经过若干次全变换必然会在某一步变成偶数. 设2a0-1是我们要研究的奇数,它经过全变换变成3a0-1,假设它是一个奇数并且等于2a1-1,2a1-1又经过全变换变成为3a1-1=2a2-1,3a2-1=2a3-1,...3ak-1-1=2ak-1,所以a1=(3/2)a0,a2=(3/2)a1,...ak=(3/2)ak-1. 所以最后ak=(3/2)ka0,要使ak是整数,可令a0=2kn,(n是奇数).于是ak=3kn.则从2a0-1经过若干次全变换过程如下: 2k+1n-1 - 3*2kn-1 - 32*2k-1n-1 - 33*2k-2n-1 -... - 3k+1n-1 (偶数). 然后我们证明经过全变换变成偶数的奇数一定大于该偶数经过若干偶变换之后得到的奇数. 设3k+1n-1=2mh (h为奇数),我们要证明 h2*3kn-1: h=(2*3kn-1+3kn)/2m2*3kn-1,令a=3kn,b=2m-1,则有 2aba+b,而这是显然的. 定义:以下我们将称呼上述的连续全变换紧接着连续的偶变换的从奇数到另外一个奇数的过程为一个变换链. 接着我们证明奇数经过一个变换链所得的奇数不可能是变换链中的任何中间结果,包括第一个奇数. 若以B(n)表示奇数n的变换次数,m是n经过变换首次遇到的其他奇数,则有 定理三:B(n)=k+1+B(m),其中k是满足3n+1=2km的非负整数. 证明:n经过一次奇变换,再经过k次偶变换变成奇数m,得证. 举例来说,B(15)=2+B(23)=2+2+B(35)=2+2+2+B(53)=2+2+2+5+1+B(5)=2+2+2+5+1+5=17 原始克拉茨 二十世纪30年代,克拉茨还在上大学的时候,受到一些著名的数学家影响,对于数论函数发生了兴趣,为此研究了有关函数的迭代问题. 在1932年7月1日的笔记本中,他研究了这样一个函数: F(x)= 2x/3 (如果x被3整除 或者 (4x-1)/3 (如果x被3除余1)或者 (4x+1)/3 (如果x被3除余2) 则F(1)=1,F(2)=3,F(3)=2,F(4)=5,F(5)=7,F(6)=4,F(7)=9,F(8)=11,F(9)=6,...为了便于观察上述迭代结果,我们将它们写成置换的形式: 1 2 3 4 5 6 7 8 9 ... 1 3 2 5 7 4 9 11 6 ... 由此观察到:对于x=2,3的F迭代产生循环(2,3) 对于x=4,5,6,7,9的F迭代产生循环(5,7,9,6,4). 接下来就是对x=8进行迭代,克拉茨在这里遇到了困难,他不能确知,这个迭代是否会形成循环,也不知道对全体自然数做迭代除了得到上述两个循环之外,是否还会产生其他循环.后人将这个问题称为原始克拉茨问题.现在人们更感兴趣的是它的逆问题: G(x)= 3x/2 (如果x是偶数)或者 (3x+1)/4 (如果x被4除余1)或者 (3x-1)/4 (如果x被4除余3) 不难证明,G(x)恰是原始克拉茨函数F(x)的反函数.对于任何正整数x做G迭代,会有什么样的结果呢? 经计算,已经得到下列四个循环: (1),(2,3),(4,6,9,7,5),(44,66,99,74,111,83,62,93,70,105,79,59). 因为G迭代与F迭代是互逆的,由此知道,F迭代还应有循环(59,79,105,70,93,62,83,111,74,99,66,44). G迭代还能有别的循环吗?为了找到别的循环,人们想到了下面的巧妙方法: 由于G迭代使后项是前项的3/2(当前项是偶数时)或近似的3/4(当前项是奇数).如果G迭代中出现循环,比如迭代的第t项at与第s项as重复(ts):at=as.但 as/as-1,as-1/as-2,...at+1/at 或等于3/2,或者近似于3/22,因而 1=as/at=as/as-1*as-1/as-2*...at+1/at≈3m/2n 这里 m=s-t,m n 即 2n≈3m log22n≈log23m 故 n/m≈log23 这就是说,为了寻找出有重复的项(即有循环),应求出log23的渐进分数n/m,且m可能是一个循环所包含的数的个数,即循环的长度. log23展开成连分数后,可得到下列紧缺度不同的渐进分数: log23≈2/1,3/2,8/5,19/12,65/41,84/53,485/306,1054/665,24727/15601,... 渐进分数2/1表明,31≈22,循环长度应为1.实际上恰存在长度为1的循环(1). 渐进分数3/2表明,32≈23,循环长度应为2.实际上恰存在长度为2的循环(2,3). 渐进分数8/5表明,35≈28,循环长度应为5.实际上恰存在长度为5的循环(4,6,9,7,5). 渐进分数19/12表明,312≈219,循环长度应为12,实际上恰存在长度为12的循环(44,66,...59). 这四个渐进分数的分母与实际存在的循环长度的一致性,给了人们一些启发与信心,促使人们继续考虑:是否存在长度为41,53,306,665,15601,...的循环?令人遗憾的是,已经证明长度是41,53,306的循环肯定不存在,那么,是否会有长度为665,15601,...的循环呢? F迭代与G迭代究竟能有哪些循环呢?人们正在努力探索中!

编辑本段角谷猜想 深度扩展

任给一个正整数n,如果n能被a整除,就将它变为n/a,如果除后不能再整除,则将它乘b加c(即bn+c)。不断重复这样的运算,经过有限步后,一定可以得到d吗? 对此题的答案只能有3种 :1不一定 2一定不 3一定都 以下都是一定都的情况 一 a=b=c=d=m 二 a=m b=1 c=-1 d=0 三 a=m b=c=d=1 四 a=2 b=2^m-1 c=-1 d=1 以上(m1) 五 a=2 b=2^m-1 c=1 d=1 六 a=2 b=c=d=2^m-1 以上m为任意自然数 最简单的情况: a=b=c=d=2 a=2 b=1 c=1 d=1 a=2 b=1 c=-1 d=0 原题只是五的当m=2情况,据说中国有许多人会证明了原题,原题只是扩展的一个及其微小的部分,原题只是扩题的第五组数据成立的一个小小特殊例子。 以上数据全部成立,没有一个反例,这道题非常短小,却隐含着非常丰富的数学思想的...需要用到的东西非常多,那些定理、公式都非常完美,可以表达非常普遍的数学规律。这是一个数学问题而不是什么猜想,绝对成立的,此题重在培养学生的独立思考问题的能力,以及逆向思维... 其实这道题非常简单 不知道是不是整体证法了 对以上情况的整体证法第一步: (对于 以上的第五组数据) 先构造一个2元函数 这个函数揭示了一个秘密 :把不能被2整除的全部的自然数都转化成能被2的自然数 f(m,n) 有a (对于 以上的第五组数据)f(m,n)=2^m*(2n-1) 五 a=2 b=2^m-1 c=1 d=1 用数学归纳 整除规律 因式分解 自然数拆分...证明: (2^(mn)-1)/(2^n-1)=e 当m和n为自然数时,e为奇数 m=1 A1=(1) m=2 A2=(1,5) m=3 A3=(1,9,11) m=4 A4=(1,17,19,23) m=5 A5=(1,33,35,37,39) m=6 A6=(1,65,67,71,73,79) ... ... ... 的组合无限数列A()的通项公式 各小项都不能被2的m次方-1整除 这个组合数列是非常简单的 只是无数个等差数列的首项....所谓的复杂 是指在不知道的情况之下的,但凡对于已经知道了答案了的人又怎么会复杂呢?? 顺着去验证: 判断能否被a整除 若能除于a 若不能 *b+c 逆着去验证: 判断能否被b整除 若能除于b 若不能 *a-c

公务员面试的典型试题有哪些

自我认知

自我认知是事业单位的重点考核题型,侧重求职动机和能岗匹配的考核,往往是很多省市事业单位面试的题。

自我认知主要有两种考核题型,一种是求职动机,一种是能岗匹配。求职动机重点考核考生的考试动机,题目的设定主要为询问考生的优点、缺点、能力、经历、爱好、考试动机和自我评价等等,简而言之,求职动机题型侧重对于考生自身情况的考核;能岗匹配,顾名思义是指能力和岗位需求相匹配,正因如此,能岗匹配题型侧重考核考生工作层面的相关能力,比如执行力、敬业精神、职业道德、团队意识、组织文化等等,简而言之,能岗匹配题型侧重考核考生的能力是否与岗位相匹配。

综合分析

综合分析题含义:

结构化面试考试中,综合分析题是比较难懂一种题型,也是考核考生素质比较全面的题型,一直是事业单位、常考的考试题型。在考官评分考核表中,对于综合分析题是这样定义的:对事物能从宏观方面进行总体考虑;对事物能从微观方面对其各个组成部分予以考虑;能注意整体和部分之间的相互联系及各部分之间的有机协调组和。

具体的范文模板

链接:

?pwd=26at 提取码: 26at  

公务员考试面试方面的问题

不要送礼,你想一开始就犯错误,那就最选被淘汰了。

请看看下面的,也许对您有用:

公务员面试是佼佼者之间的一场竞逐,每个人都在竭力展示自己最优秀的一面。作为参与者,因为要面对诸多不可预知的情境,伴随而来的紧张反应总是难免的。从心理学的角度来说,适度的紧张有助于激发人的潜力,但前提是弦不能绷得太紧,否则的话,它就可能成为压死骆驼的最后一根稻草。

影响到面试的紧张情绪从准备阶段就开始积累,到临场时达到项点,我们需要在不同的阶段做出相应的调整,才不至于被情绪所控制。下面就是一些帮助缓解紧张情绪的方法。

一、 准备阶段缓解紧张的方法

记录法 在备考时你会摄入大量的信息,当这些信息处于杂乱无章的状态,或者你感到处理起来时间不够用时,紧张便油然而生,这时你可以尝试用一支笔把你遇到的难题一一写在纸上,然后逐个加以解决。记住,每解答一个问题就在这个问题的后面画上一个五角星,以奖励自己。这样,不仅学习有了计划性,而且做事会变得有趣起来,重要的是,这时你已经是一个有条不紊的人了,这样的人遇事都会表现出从容不迫。

运动法 长时间学习导致身心疲惫,情绪会变得不稳定,这时不如放下手中事情,舒展四肢,做有节奏的呼吸。每天花二十分钟松弛肌肉是很好的做法,这将大大缓解紧张情绪,你完全可以选择自己喜欢的运动方式,比如养花、烹调、听音乐,或者带宠物到户外呼吸新鲜空气,或者打一场球出一身汗。

洗浴法 有时你已经停下手中的事情,可是大脑却始终无法安静,长期紧绷的神经会影响正常的休息。有一种方法是将注意力集中到身体上,先收缩紧张的部位,15分钟后随着呼气慢慢放松,体验细微的松弛感,再洗一个热水澡,这时你会发现心理有了一个很大的变化。

进食法 某些食物可以有效地抑制紧张。谷类制品是其中之一,比如面包、饼干、米饼等,而高脂肪食物 、含咖啡因和大量糖分的食物则相反。所以像甜品、软性饮料等,还有含多盐的食物,比如腌制小吃、土豆片,在紧张时都应该尽量少吃。紧张期间,人体消耗的维生素B和维生素C会增加,要注意补充。每餐除注意蛋白质和炭水化合物的搭配(蛋白质占1/3,炭水化合物占2/3)外,还要多喝水。营养专家认为,在焦虑的时候人体会储存水分。

二、 临场时缓解紧张的方法

放松法 面试前15分钟考生可进入引导区,很多人在这个时候紧张会达到项点。有一种反应是全身变得僵硬起来,这时你可以静坐,闭上眼睛并做深呼吸,在呼气的时候,将身体各个部位从头顶到面部,再到颈、肩,直至脚趾,依次放松,用意念使每一块肌肉松弛下来,然后想象自己处在宁静的大自然中,让山形树影清晰起来,让清泉从心田流过,洗去一切杂念。

呼吸法 处于高度紧张的时候,有的人大脑会一片空白,这时你可以找空气流通较好的地方,比如门边或窗前,闭上眼睛作几次深呼吸,给大脑增加供氧量,在吐气的同时给自己一些心理暗示,想象自己已经把不好的情绪全部吐出。也有人用吹气球代替深呼吸,在吹气的时候也做同样的心理暗示。

还有一种类似促进思维的方法,就是双手向前平伸,在身前交叉,然后两手相握并向内屈臂至胸前。反复做几次,这样的动作有助于建立左右脑的联系,可以让思维活跃起来。

道具法 临场紧张时还可以借助小道具来缓解情绪。由于现场条件限制,不能像准备阶段那样做比较激烈的运动,比如用大声叫喊或发泄式的击打来消除紧张感,这时借助一些小道具也可以起到异曲同工的作用。比如在面试的时候口袋里放一个自己认为的吉祥物,它能给你带来心理安慰;也可以拿出一张纸,在上画一个笑脸,或写下几句对自己最有鼓励的话,看了以后心情会得到愉悦;还可以带上诸如握力器或者网球之类顺手的小玩意,感到紧张的时候用力抓握。有这样的说法,“当出现紧张的心绪时,抓握运动刚好能够使我们紧张时的‘战斗和逃跑’反应得到释放。”

以上所介绍的方法在使用时效果会因人而异,每个人都有适合自己缓解紧张感的方法,因此,最好在准备阶段将各种方法都尝试一遍,找准适合自己的那一种,这样在临场时就能够自如地应用,及时调整好情绪,做到从容不迫。

参考资料:

国家公务员考试宝典:面试缓解紧张心法 ;UserID=14676b=103t=71667

2019河南公务员考试牛吃草解题技巧

行政职业能力测试是公务员考试公共笔试中的一门,也是其中难度较大的一项。对于应试者的综合素质进行了全方面的测查,要想顺利地通过这场考试拿到一个高分需要我们未来的公务员们“文武”双全,不仅要有丰富的知识积累和逻辑思维,也需要能在有限的时间内充分地发挥出实力来。这场考试不可谓不难!

但也正是因为难,它才能拉开分差,让你顺利占据面试战场上的有利地形,秒杀其他对手。那么如何甩开竞争者呢?如何在有限的时间里尽量地多拿分呢?这就需要各位掌握好一些基本的问题的常用方法。

在行测考试中,有一类问题一直困扰着很多备考者,那就是我们的数量关系,对于这类问题题量虽然一直不算多,但是题目倒有一定难度。那么有没有方法解决难题呢?

下面中公教育专家就带大家一起来了解一类有趣的问题,那就是我们的牛吃草问题!

例1:一片草场上草每天都均匀生长,如果放24头牛,则6天吃完;如果放21头牛,则8天吃完。问如果放16头牛,几天可以吃完牧草?

这就是“牛吃草”的基本题型了,那么这个牛吃草问题该如何做呢?

第一步,我们可以设每头牛每天吃一份草,则N头牛每天吃N份草;设草每天生长x份。

第二步,若原有草量为M,则有:24头牛每天吃24份,6天吃6×24=144份,这144份包括原有草量M和草后来6天生长的6x份,即6×24-6x=M,整理下即M=(24-x)×6;同理,M=(21-x)×8,M=(16-x)×T。根据这两个式子我们就可以求出M=72,x=12,代入M=(16-x)×T,可得T=18。

从这个例题中我们可以发现,其实要求牛吃草类的问题我们只需要使用一个公式就行了:(N1-x)×T1=(N2-x)×T2=(N3-x)×T3。

但是牛吃草的问题,未必全是“牛”,全是“草”,其实很多概念会与牛与草大相径庭,只要满足有两个影响因素,且有三个时间加个数的排比就可以利用上述公式来解题!

例2:某招聘会在入场前若干分钟就开始排队,每分钟来的求职者一样多,从开始入场到等候入场的队伍消失,同时开4个入口需30分,同时开5个入口需20分,若同时开6个入口需多少分钟?

A.8 B.10 C.12 D.15

【中公解析】D。

(4-x)×30=(5-x)×20=(6-x)×T,解得T=15。

2018国家公务员考试行测数量关系:抽屉问题?

一、考情分析

抽屉问题在国家公务员考试虽不多见,但是它的难度一直比较大,其中的最差思想也能够帮助其他部分解题,因此仍然需要大家记住它的解法。

二、抽屉原理概述

抽屉原理,又叫狄利克雷原理,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果。许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决。那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起。

将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果。虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果。

如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

在公务员考试数学运算中,考查抽屉原理问题时,题干通常有“至少……,才能保证……”这样的字眼。

我们下面讲述一下抽屉原理的两个重要结论:

①抽屉原理1

将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉)

②抽屉原理2

将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可以理解为至少有m+1件物品在同一个抽屉)

三、直接利用抽屉原理解题

(一)利用抽屉原理1

例题1:有20位运动员参加长跑,他们的参赛号码分别是1、2、3、…、20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?

A.12 B.15 C.14 D.13

【答案详解】若想使两个号码的差是13,考虑将满足这个条件的两个数放在一组,这样的号码分别是{1、14}、{2、15}、{3、16}、{4、17}、{5、18}、{6、19}、{7、20},共7组。还剩下号码8、9、10、11、12、13,共6个。考虑最差的情况,先取出这6个号码,再从前7组中的每一组取1个号码,这样再任意取出1个号码就能保证至少有两个号码的差是13的倍数,共取出了6+7+1=14个号码。

(二)利用抽屉原理2

例题2:一个口袋中有50个编上号码的相同的小球,其中编号为1、2、3、4、5的各有10个。一次至少要取出多少小球,才能保证其中至少有4个号码相同的小球?

A.20个 B.25个 C.16个 D.30个

【答案详解】将1、2、3、4、5五种号码看成5个抽屉。要保证有一个抽屉中至少有4件物品,根据抽屉原理2,至少要取出5×3+1=16个小球,才能保证其中至少有4个号码相同的小球。

四、利用最差原则

最差原则说的就是在抽屉问题中,考查最差的情况来求得答案。因为抽屉原理问题所求多为极端情况,故可以从最差的情况考虑。从各类公务员考试真题来看,“考虑最差情况”这一方法的使用广泛而且有效。

例题3:从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少6张牌的花色相同?

A.21 B.22 C.23 D.24

【答案详解】一副完整的扑克牌包括大王、小王;红桃、方块、黑桃、梅花各13张,分别是A、2、3、4、5、6、7、8、9、10、J、Q、K。要求6张牌的花色相同,考虑最差情况,即红桃、方块、黑桃、梅花各抽出5张,再加上大王、小王,此时共取出了4×5+2=22张,此时若再取一张,则一定有一种花色的牌有6张。即至少取出23张牌,才能保证至少6张牌的花色相同。

例题4:一个布袋里有大小相同、颜色不同的一些小球,其中红的10个,白的9个,黄的8个,蓝的2个。一次至少取多少个球,才能保证有4个相同颜色的球?

A.12 B.13 C.14 D.15

【答案详解】从最坏的情况考虑,红、白、黄三种颜色的球各取了3个,蓝色的球取了2个,这时共取球3×3+2=11个,若再取1个球,那么不管取到何种颜色的球,都能保证有4个相同颜色的球,故至少要取12个。

五、与排列组合问题结合

例题5:某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?

A.382 B.406 C.451 D.516

【答案详解】从10位候选人中选2人共有C =45种不同的选法,每种不同的选法即是一个抽屉。要保证有不少于10位选举人投了相同两位候选人的票,由抽屉原理2知,至少要有45×9+1=406位选举人投票。

六、与几何问题结合

例题6:在一个长4米、宽3米的长方形中,任意撒入5个豆,5个豆中距离最小的两个豆距离的最大值是多少米?

A.5 B.4 C.3 D.2.5

【答案详解】将长方形分成四个全等的小长方形(长为2米,宽为1.5米),若放5个豆的话,则必有2个豆放在同一个小长方形中,二者之间的距离不大于小长方形对角线长,因此5个豆中距离最小的两个豆距离的最大值是2.5米。

关于公务员考试中有趣的问题和最奇葩的公务员考试题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

Powered By Z-BlogPHP 1.7.4